Wavelength Isolation Sequence Pairs

Jonathan Jedwab * and Jane Wodlinger **

Department of Mathematics, Simon Fraser University, 8888 University Drive,
Burnaby, BC, V5A 156, Canada
{jed, jwodling}@sfu.ca
9 January 2012 (revised 14 March 2012)

Abstract. Inthe early 1950s, Golay studied binary sequence pairs whose
autocorrelation properties are ideal for use in the design of multislit spec-
trometers. He found examples for some small lengths, but, unable to
find more, he suggested that perhaps further examples do not exist and
turned his attention to an alternative solution to the design problem (in-
volving what are now called Golay complementary sequence pairs). The
original sequence pairs that Golay sought appear to have been overlooked
in the sixty years since. We present examples of these pairs, which we
call wavelength isolation sequence pairs, for two new lengths. We provide
structural constraints on these sequence pairs and describe a method
whereby each of the currently known examples can be constructed from
a perfect Golomb ruler.

1 History and Motivation

A spectrometer is a device that produces a spectrum from a source of electro-
magnetic radiation (see [3] for background on spectrometers). For example, such
a device may be used in the analysis of light emitted from an unknown incan-
descent material in order to establish its chemical makeup. When the incident
radiation comprises more than one wavelength, it is often desirable to distinguish
a particular wavelength of interest from background radiation.

In 1951, Golay [5] discussed a spectrometer design that isolates radiation of
interest (desired radiation) from background radiation by processing incoming
radiation in two ‘streams’, each consisting of an entrance mask, an exit mask
and a detector. The entrance and exit masks are opaque surfaces with a pattern
of narrow, equally spaced rectangular slits through which radiation passes on
its way to identical detectors. The principle is that if radiation of a background
wavelength is always passed through the two streams in equal quantities, while
radiation of the desired wavelength is passed differentially by the two streams,
then the difference in total energy as measured by the two detectors is wholly
attributable to radiation of the desired wavelength. Fig. 1 shows a schematic
representation of such a spectrometer.
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Fig. 1. Schematic representation of Golay’s spectrometer design

Golay’s mulitislit spectrometer design takes advantage of diffraction to reg-
ulate the passage of radiation through the two streams. Diffraction causes ra-
diation to bend as it passes through a narrow opening. A pattern of “open”
and “closed” slits is inscribed in the (otherwise opaque) surface of each entrance
mask; incident radiation is blocked by the closed slits but passes through the
open slits and is diffracted. Since the angle of diffraction varies with wavelength,
this separates the incoming radiation into a spectrum, so that each wavelength
can be treated differently as it passes through the rest of the spectrometer. In
particular, the exit masks are similarly inscribed with a pattern of open and
closed slits, which block some radiation and pass the rest to the detectors. The
amount of radiation of a given wavelength that is passed by each stream is de-
termined by the entrance and exit slit patterns. The slit patterns must be chosen
to isolate the desired wavelength reliably while still being easy to manufacture
(thus having relatively few slits).

In the following discussion, we assume that the desired radiation does not
undergo diffraction, and thus will reach the detector whenever there is an open
slit in the exit pattern aligned with an open slit in the entrance pattern. Then,
if background radiation of wavelength A, is diffracted such that it arrives at the
exit mask v positions (slits) to the right or left, then radiation of wavelength A,
will reach the detector whenever there is an open slit in the exit mask v positions
to the right or left, respectively, of an open slit in the entrance mask. The case
where the desired radiation does undergo diffraction can be treated by simply
translating both exit masks by an appropriate amount relative to the entrance
masks.



Golay represented the entrance and exit slit patterns as binary {0,1} se-
quences, in which 0s represent closed slits and 1s represent open slits. Fig. 2
shows radiation of background wavelength \{, which is diffracted by one posi-
tion to the right, passing through the entrance and exit masks of one stream of
a spectrometer, along with the binary sequences associated with the entrance
and exit slit patterns. The stream pictured allows one passage of radiation of
wavelength A; to the detector.

Entrance slit pattern ——

Exit slit pattern ——

Detector

Fig. 2. Example of one stream of a multislit spectrometer

Golay [5] proposed that effective isolation of the desired wavelength could be
achieved by entrance slit patterns A and B and exit slit patterns A’ and B’ with
the following properties.

(a) A’ is an exact copy of A, and B’ is the complement of B.

(b) The number of open slits in A that are followed at distance v > 0 (reading
from left to right) by an open slit is equal to the number of open slits in B
that are followed at distance v by a closed slit, and also equal to the number
of closed slits in B followed at distance v by an open slit.

Condition (a) guarantees that all of the desired radiation passed by entrance
slit pattern A reaches the detector whereas none of the desired radiation passed
by entrance slit pattern B does so. Condition (b) guarantees that radiation of a
background wavelength is always passed identically by the two streams, whether
it is diffracted to the right (hence the open-closed condition) or the left (hence
the closed-open condition).

Since the two exit slit patterns are determined by the two entrance slit pat-
terns, the optical system described above is modeled by an ordered pair of binary
{0,1} sequences A and B, which represent the entrance slit patterns A and B,
respectively. The system illustrated in Fig. 3 corresponds to the sequence pair
A = (11010), B = (10001). Fig. 3(a) shows the differential passage of the desired
wavelength through both streams, while Fig. 3(b) shows the identical passage of
background wavelength \; through both streams.

In 1951, Golay found examples of sequences satisfying Conditions (a) and (b)
by hand for lengths 3, 5 and 8 [5]. Unable to find further (nontrivial) examples,
he stated that “the possibility must be reckoned with, that solutions for such
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(a) Passage of desired radiation through both streams of a multislit spectrometer

Stream A Stream B

Detector A Detector B

(b) Passage of one wavelength of background radiation through both streams of a
multislit spectrometer

Fig. 3. Example of a multislit spectrometer with entrance and exit slit patterns satis-
fying Conditions (a) and (b)

patterns with more than 8 slits do not exist.” He diverted his attention to an
alternative solution to the problem— one that uses a two-row array of slits rather
than a single row, the patterns for which can be constructed for infinitely many
lengths using what are now known as Golay complementary sequence pairs (see,
for example, [6], [10], [7] for background on these complementary pairs). The
search for sequences suitable for single row entrance slit patterns, which we have
termed wavelength isolation sequence pairs (WISPs), was apparently forgotten
for the next sixty years.

In Sect. 2 we show that in fact there is a WISP of length 13 as well as a WISP
of length 7 that Golay overlooked. We then present some structural constraints
on WISPs. In Sect. 3 we describe a construction method that explains all of the
known examples of WISPs, by making a connection to perfect Golomb rulers.
In Sect. 4 we provide partial results on the classification of all WISPs.

2 Structural Constraints on WISPs

Let A = (ao, . ..,a;—1) be a binary {0, 1} sequence of length t and let x,y € {0, 1}.
For v > 0, we define

Sa(z,y,v) = [{(j,j +v) : (aj,aj40) = (x,y) and 0 < j <t —v}]



to be the number of positions in A containing an x followed at distance v by
a y. For example, if A = (10100100) then S4(1,1,3) =1 and S4(1,0,4) = 2. We
note that S4(1,1,v) is the aperiodic autocorrelation of the {0,1} sequence A.
We write w(A) for the weight of A, namely its number of 1s. We now formally
define a WISP.

Definition 1. Let A = (ag,...,a;—1) and B = (by,...,bi—1) be binary se-
quences of length t. We say that (A, B) is a wavelength isolation sequence pair
(WISP) if

w(A)>1 and (1)
Sa(l,1,v) = Sp(1,0,v) = Sp(0,1,v) forl<v<t. (2)

It is easily verified by reference to Condition (b) in Sect. 1 that if A and B
form a WISP then they will be suitable for use as the entrance slit patterns of
a multislit spectrometer (Condition (1) ensures that some radiation is passed).
Without loss of generality, we can take ag = 1 (by left-shifting the elements
of A and padding with zeroes on the right). We can also form an equivalent
WISP by reversing the subsequence of A from its initial ‘1’ element ag to its
final ‘1’ element. Further, if (A, B) is a WISP then so is (A, B), where B is the
complement of B, since Sp(1,0,v) = S5(0,1,v). Thus we may take w(B) < £.
There is a WISP of every length, namely A = (10...0) and B = (0...0),
whose corresponding multislit spectrometer is trivial. We consider a WISP to
be nontrivial if w(A) > 1. Up to equivalence, there are five known nontrivial
examples of WISPs, as presented in Table 1. The examples in the first column
were known to Golay [5], while the examples in the second column are new.

Table 1. All known nontrivial WISPs, up to equivalence

A = (110) A = (1101000)
B = (010) B = (0001000)
A = (11010) A = (1100101000000)
B = (10001) B = (0000001000000)

A = (11001010)
B = (10000001)

We now present an important structural constraint on WISPs.
Proposition 2. If A and B form a WISP then B is symmetric.

Proof. Suppose that A = (1, ay ... a;—1) and B = (bpby ... by_1) form a WISP
of length ¢ > 1. Then by (2) with v = ¢ — 1, we obtain

bo = b1 . (3)



We may therefore take ¢ > 3. We now prove by induction on 4 that b; = b;_1_;
for 0 < 2i <t —1, so that B is symmetric. The base case i = 0 is given by (3).
Assume that cases up to i — 1 hold, where 2 < 2¢ < t — 1, so that B has the form

B=(bobi - bioa| b~ b | bics o bidy)
We wish to prove that b; = b;_1_;.
By (2) with v =t — 1 — 4, we have
Sp(1,0,t —1—14) = Sp(0,1,t—1—4) . (4)

But by the inductive hypothesis, (bj,bj+t_1_i) = (bt—l—j,bi—j) for 1 < _] <
i — 1, so that the contributions to Sg(1,0,¢ — 1 —4) arising from index pairs
(jyj+t—1—14) with 1 < j < i—1 are exactly balanced by the contri-
butions to Sp(0,1,t —1—14) arising from index pairs (i — j,t — 1 — j) with
1 <j <i—1. Accounting for the remaining contributions to Sg(1,0,t — 1 — )
and Sp(0,1,¢ — 1 —4) from index pairs (0, —1—4) and (¢,t — 1), and using (4),
then gives
(bo, bi—1-i) = (1,0) < (b, be—1) = (0, 1)

and
(bO;bt—l—i) = (0, 1) = (biabt—l) = (1,0) .

Using (3), we obtain b; = b;_1_; as required, thus completing the induction.

In light of the symmetry of B, the conditions on a WISP may be rephrased
to give an alternative definition.

Alternative Definition 3. Let A = (ag,...,at—1) and B = (bg,...,bi—1) be
binary sequences of length t. We say that A and B form a wavelength isolation
sequence pair (WISP) if

B is symmetric,
w(A)>1 and (5)
Sa(l,1,v) = Sp(1,0,v) forl<ov<t. (6)

We will present a second structural constraint in Proposition 5 concerning
the weights of members of WISPs. In preparation, we will prove Lemma 4. For
v > 0, we define

PA(xvyaU) = |{(.]7.] +U) : (ajaa(j+v) mod t) = (a:,y) and 0 < J< t}| s
a periodic analogue of Sa(z,y,v).

Lemma 4. For every binary {0,1} sequence C' of length t,

iPc(l, 1,v) = w(C)* —w(C) . (7)

Furthermore, if A and B form a WISP of length t, then
Ps(1,1,v)+ Pp(1,1,v) =w(B) forl<v<t. (8)



Proof. For (7), we note that

t—1
Y Po(1,1,0) = w(C)(w(C) 1) , (9)
v=1

since each ordered pair of distinct ‘1’ entries in C' contributes exactly 1 to the

sum. It is easily verified that

Sc(x,y,v)—l—SC(x,y,t—v):Pc(x,y,v) for 1 <wv <t (10)

(which is a restatement of a well-known relation between the periodic and ape-
riodic autocorrelations of a binary sequence). Let 1 < v < t. Applying (10) with
(Cyz,y) = (A,1,1) and (B, 1,0) gives

Pa(1,1,v) = Pg(1,0,v) , (11)

by (6). There are w(B) 1s in B, of which Pg(1,1,v) are followed by a 1 at
(periodic) distance v and Pg(1,0,v) are followed by a 0. Therefore

P3(1,0,0) + Pp(1,1,0) = w(B) ,
which combines with (11) to give (8).
Proposition 5 now follows easily from Lemma 4.

Proposition 5. Suppose that A = (ag,...,a;—1) and B = (by,...,bi—1) form a
WISP of length t. Then

w(A)? +w(B)? = w(B)t + w(A)

Proof. Summing (8) over v =1,...,t — 1 gives

t—1 t—1
> Pa(l,1,v)+ ) Pp(1,1,0) = (t—1)w(B) .
v=1 v=1

Substitution from (7) gives the result.

3 Construction of WISPs from Perfect Golomb Rulers

Golomb rulers were studied by Babcock [2] in 1953 for use in eliminating third-
order interference between radio communications channels. Since then, they have
been studied by different researchers under a variety of names, including distinct
difference sets [1]. They are named for Prof. Solomon Golomb, who conducted a
systematic study of their properties (see [4] for details). In addition to Babcock’s
application in radio communications, Golomb rulers can be used in X-ray crys-
tallography to distinguish crystal lattice structures whose diffraction patterns
are identical; in coding theory to produce self-orthogonal codes; and in radio



astronomy, both in locating distant radio sources and in determining the best
layout of linear antenna arrays [8].

Golomb rulers are equivalent to Sidon sets [4], as defined by Sidon [9] in 1932
in connection with a problem in combinatorial number theory; the two objects
were studied independently for many years before the connection was made [4].

Definition 6. A Golomb ruler is a set of marks at integer positions along a
ruler such that no two distinct pairs of marks are the same distance apart. The
number n of marks is called the order of the ruler and the largest distance £
between any two marks is called the length of the ruler.

Ezample 7. Consider the following ruler of length 6 and order 3, with marks at
positions 0, 4 and 6.

The distances between pairs of marks are 2, 4 and 6, so the above is a Golomb
ruler.

By convention, we write the set of marks {mg,m1,...,m,—1} of a Golomb
ruler of length ¢ and order n in increasing order, taking the smallest mark to be
0 so that the largest is £.

Definition 8. A Golomb ruler R of length £ and order n is perfect if for every
integer d satisfying 1 < d < £, there is exactly one pair of marks mi,ms € R
such that mo — my1 = d.

Clearly, a Golomb ruler of length ¢ and order n satisfies £ > (%); if the ruler is
perfect then £ = (}). A perfect Golomb ruler can be obtained from the Golomb
ruler in Example 7 by adding a mark at position 1.

Theorem 9 describes two construction procedures, each of which produces
a WISP from a perfect Golomb ruler of length ¢. The constructed WISPs are
inequivalent for ¢ # 1.

Theorem 9. Let R be a perfect Golomb ruler of order n > 1 and length £ = (g)
For0<j <Y, let

0 otherwise .

{1 forj € R;
Cj =

Then

A=(0c...c00
{B (101...0613 (12)

is a WISP of length £ + 2 and



A=(cg...c)—110...0)
{B(oo...% 10...0) (13)

is a WISP of length 2¢ 4+ 1.

Proof. We will show that A and B satisfy the conditions of Alternative Defini-
tion 3 under both Constructions (12) and (13). Clearly, Condition (5) is satisfied
and B is symmetric in both cases, so we need only show that Condition (6) is
satisfied in both cases (with ¢ = £+ 2 for the pair (12) and t = 2¢+ 1 for the pair
(13)). By construction, the positions of the 1s in A are the marks of the perfect
Golomb ruler R, and

1 forl<ov</¢
SA(l,l,'U):SB<17O7U):{O for’l);g,_

There are only four perfect Golomb rulers, the longest of which has length 6.

Proposition 10. (Golomb, see [4]) Up to reversal and translation, the only per-
fect Golomb rulers are

Order (n) Length (¢) Ruler

1 0 {01

2 1 {0,1}

3 3 {0,1,3}

4 6 {0,1,4,6}

Each of the known WISPs (or one that is equivalent), presented in Table 1,
can be constructed by (12) or (13) from one of the perfect Golomb rulers listed
in Proposition 10. Trivial WISP lengths 2 and 1 arise from the perfect Golomb
ruler of length 0, WISP lengths 3 and 3 from length 1, WISP lengths 5 and 7
from length 3, and WISP lengths 8 and 13 from length 6.

4 Are There WISPs of Length Greater Than 137

There are no more perfect Golomb rulers to use in Theorem 9, and computer
search rules out the existence of additional WISPs for lengths less than 32.
We were unable to determine whether there are any more WISPs. However,
Propositions 11 and 12 give partial results on the classification of all WISPs.

Proposition 11. Up to equivalence, the only nontrivial WISPs (A, B) with
w(B) =1 are those listed in Table 1.

Proof. Let A and B form a nontrivial WISP of length ¢ with w(B) = 1. Then,
since B is symmetric, ¢ is odd and

poo J1 fori=5t
‘ 0 otherwise .



Thus

—

1 forl<ov<iz

— 2
SB(LO’U)_{O for%<v<t7
which, since A and B form a WISP, forces
1 forl<ov<izt
_ SV
SA(LLU)_{O for%<v<t.

Then the subsequence of A from its initial to final ‘1’ element (this sequence hav-
ing % +1 elements) is a perfect Golomb ruler of length % By Proposition 10,
t—1

5= =0,1,3 or 6 and A is determined up to reversal and translation.

A similar argument shows that WISPs with B = (10...01) are characterised
by Construction (12) of Theorem 9. Proposition 12 rules out another case in
which w(B) = 2, where the 1s are in the central positions of B.

Proposition 12. Suppose that A and B form a WISP of length t > 2. Then
B #(0...0110...0).

Proof. Suppose for a contradiction that B = (0...0110...0). Then ¢ is even,
and
1 forv=1, %
Sa(1,1,0) =Sp(1,0,0) =¢ 2 for2<v<i-—1 (14)
0 for % <v<t.

Without loss of generality, applying (14) § times with v = ¢ — 1,¢ —2,..., £,
respectively, gives A = (lay...a; ,10...0). Then in the case t = 4 we de-
rive a contradiction from S4(1,1,1) = 1, and in the case t > 4 the con-
dition S4(1,1,£—1) = 2 forces A = (1las. ..ax_5110...0), contradicting
Sa(1,1,1) = 1.
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